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Motivation Contributions

Optimization

● DL-Architecture-Agnostic Design: Unified interface 
allowing seamless integration of diverse deep learning 
architectures with their specific preprocessing requirements

●Low-Resource-Proxy-Search-Space for Optimizer 
Selection: Implementation of a custom HPOSuite 
Benchmark that is similarly structured as the final task but 
much faster in evaluation.
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Resources Used

For development:
- 1 RTX3070 

8GB GPU
- AMD Ryzen 

5600X 6 Core
- Dev compute 

estimate: 15 
GPU-h

For HPOsuite 
evaluation:
- 10 GPU-h 

For AutoML:
- 14 GPU-h

Workforce:
- 1 full week on 

average
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● Problem: Text classification optimization faces efficiency 
challenges, i.e exploring vast hyperparameter spaces 
across diverse architectures under computational 
constraints leads to suboptimal models.

● Impact: Achieve competitive text classification with 
reduced computational resources while gaining insights 
into hyperparameter significance.

● Token dropping: A hyperparameter was implemented 
that controls what percentage of tokens (padding tokens 
prioritized) are randomly dropped to improve the training 
performance of LSTM and Transformer models.

● Multi-Fidelity Optimization: We optimized using 
training epochs as the fidelity dimension.

● Fewer Data: We only used 40% of the training dataset 
for the final optimization.

● Early Stopping: A trend-based early stopper with EMA 
noise filtering was implemented to end poor runs early 
on when the learning trend falls below a small threshold.

● Frameworks: NEPS and DEHB were used as main 
optimization frameworks. NEPS because it was a solid 
starting point, and DEHB because it seemed likely that it 
would be able to handle complex, hierarchical and high 
dimensional search spaces well, as its evolutionary 
strategy makes it less vulnerable to irrelevant parameters.

● HPO Optimizer Selection: For the selection of the HPO 
optimizer, a more efficient but similar structured proxy 
search space was constructed and implemented as a 
HPOSuite benchmark to evaluate PriorBand [1], DEHB [2] 
and RandomSearch [3].
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● Search Strategy: 
DEHB significantly 
outperforms 
PriorBand, 
especially in terms 
of speed, which 
motivated the 
decision to use 
DEHB for the final 
optimization run.

● Hyperparameter 
Importance:             
The learning rate’s 
impact greatly outshone 
others, it was followed 
by the 2 token 
hyperparameters   
(Keep token percentage 
and Token Length)

● DEHB 
Optimization:   
The optimization 
ran for a total of 
12h, finding a good 
configuration early 
on (4h), 
demonstrating 
DEHB’s fast 
convergence.

● Training of best 
configuration:             
The training of the 
best configuration 
(LSTM) peaked at 
0.662 Validation 
Accuracy.

● Test performance


