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Introduction

How do you scale a TabPFN? What hyperparameters matter most?

This study explores the relationship between model size and optimal training
configurations for NanoTabPFN, a lightweight proxy for TabPFN[1]. Using random
search with no prior assumptions, we analyze how scaling affects both performance
and hyperparameter sensitivity. The evaluation is on TabArena|2] benchmark.

Our results reveal that smaller and deeper models can outperform shallower and
larger configurations.

Methodology

Learning Rate 0.00001, 0.01] Log Scale

Batch Size 32, 64, 128, 256] Categorical

Optimizer AdamW, Muon[4], Lion[5], AdamW  Categorical Validation

Schedule Free]
Scale Name Layers | Embedding MLP hidden| Params HPO Train Synthetic Rial Datasets:
. Random L. Iris
Big ~ Base 8 192 108 49 M ( . =P NanoTabPFN Validation .
Width 4 192 768 Search via Model Natacet % Wine
Medium Depth 8 140 560 26 M (NePS[3]) (1600 samples) % Breast
Compound 6 160 640 cancer
Width 2 192 768
Small Depth 8 100 400 1.35 M
Compound 4 140 560
Mini Compound 6 64 192 0.37 M
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